Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer.

نویسندگان

  • W Huang
  • X Zhou
  • V Lefebvre
  • B de Crombrugghe
چکیده

Sox9 is a high-mobility-group domain-containing transcription factor required for chondrocyte differentiation and cartilage formation. We used a yeast two-hybrid method based on Son of Sevenless (SOS) recruitment to screen a chondrocyte cDNA library and found that the catalytic subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA-Calpha) interacted specifically with SOX9. Next we found that two consensus PKA phosphorylation sites within SOX9 could be phosphorylated by PKA in vitro and that SOX9 could be phosphorylated by PKA-Calpha in vivo. In COS-7 cells cotransfected with PKA-Calpha and SOX9 expression plasmids, PKA enhanced the phosphorylation of wild-type SOX9 but did not affect phosphorylation of a SOX9 protein in which the two PKA phosphorylation sites (S(64) and S(211)) were mutated. Using a phosphospecific antibody that specifically recognized SOX9 phosphorylated at serine 211, one of the two PKA phosphorylation sites, we demonstrated that addition of cAMP to chondrocytes strongly increased the phosphorylation of endogenous Sox9. In addition, immunohistochemistry of mouse embryo hind legs showed that Sox9 phosphorylated at serine 211 was principally localized in the prehypertrophic zone of the growth plate, corresponding to the major site of expression of the parathyroid hormone-related peptide (PTHrP) receptor. Since cAMP has previously been shown to effectively increase the mRNA levels of Col2a1 and other specific markers of chondrocyte differentiation in culture, we then asked whether PKA phosphorylation could modulate the activity of SOX9. Addition of 8-bromo-cAMP to chondrocytes in culture increased the activity of a transiently transfected SOX9-dependent 48-bp Col2a1 chondrocyte-specific enhancer; similarly, cotransfection of PKA-Calpha increased the activity of this enhancer. Mutations of the two PKA phosphorylation consensus sites of SOX9 markedly decreased the PKA-Calpha activation of this enhancer by SOX9. PKA phosphorylation and the mutations in the consensus PKA phosphorylation sites of SOX9 did not alter its nuclear localization. In vitro phosphorylation of SOX9 by PKA resulted in more efficient DNA binding. We conclude that SOX9 is a target of cAMP signaling and that phosphorylation of SOX9 by PKA enhances its transcriptional and DNA-binding activity. Because PTHrP signaling is mediated by cAMP, our results support the hypothesis that Sox9 is a target of PTHrP signaling in the growth plate and that the increased activity of Sox9 might mediate the effect of PTHrP in maintaining the cells as nonhypertrophic chondrocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones.

In the growth plate of endochondral bones, parathyroid hormone (PTH)-related peptide (PTHrP) regulates the rate of chondrocyte maturation from prehypertrophic chondrocytes to hypertrophic chondrocytes. Using an antibody specific for Sox9 phosphorylated at serine 181 (S(181)), one of the two consensus protein kinase A phosphorylation sites of Sox9, we showed that the addition of PTHrP strongly i...

متن کامل

Transcriptional regulation of chondrogenesis by coactivator Tip60 via chromatin association with Sox9 and Sox5

Sox9 is a transcription factor of the SRY family required for several steps of chondrogenesis. It activates the expression of various chondrocyte-specific genes, but the mechanisms and role of cofactors involved in Sox9-regulated gene transcription are not fully understood. Here, we report on the characterization of a Tat interactive protein-60 (Tip60) as Sox9-associated protein identified in a...

متن کامل

SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene.

The identification of mutations in the SRY-related SOX9 gene in patients with campomelic dysplasia, a severe skeletal malformation syndrome, and the abundant expression of Sox9 in mouse chondroprogenitor cells and fully differentiated chondrocytes during embryonic development have suggested the hypothesis that SOX9 might play a role in chondrogenesis. Our previous experiments with the gene (Col...

متن کامل

A zinc finger transcription factor, alphaA-crystallin binding protein 1, is a negative regulator of the chondrocyte-specific enhancer of the alpha1(II) collagen gene.

Transcription of the type II collagen gene (Col2a1) is regulated by multiple cis-acting sites. The enhancer element, which is located in the first intron, is necessary for high-level and cartilage-specific expression of Col2a1. A mouse limb bud cDNA expression library was screened by the Saccharomyces cerevisiae one-hybrid screening method to identify protein factors bound to the enhancer. A zi...

متن کامل

Nkx3.2 Promotes Primary Chondrogenic Differentiation by Upregulating Col2a1 Transcription

BACKGROUND The Nkx3.2 transcription factor promotes chondrogenesis by forming a positive regulatory loop with a crucial chondrogenic transcription factor, Sox9. Previous studies have indicated that factors other than Sox9 may promote chondrogenesis directly, but these factors have not been identified. Here, we test the hypothesis that Nkx3.2 promotes chondrogenesis directly by Sox9-independent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 20 11  شماره 

صفحات  -

تاریخ انتشار 2000